Semialgebraic Optimization for Lipschitz Constants of ReLU Networks

Tong Chen, Jean-Bernard Lasserre, Victor Magron, Edouard Pauwels tchen@laas.fr, lasserre@laas.fr, vmagron@laas.fr, edouard.pauwels@irit.fr

Problem Settings

Computing the upper bounds of Lipschitz constants (with respect to norm $\|\cdot\|$) of fullyconnected ReLU networks. Notations:
$\mathbf{A}, \mathbf{b}, \mathbf{c}$: parameters of the network;
m : number of hidden layers;
t : variables that dualize the norm $\|\cdot\|$;
u : lifting variables of the derivative of ReLU function;
x : variables in each layer;
xy : product of two vectors is considered as coordinate-wise product.

Mathematical Formulation
$\begin{equation*} \max _{\mathbf{x}_{i}, \mathbf{u}, \mathbf{t}, \mathrm{t}} \mathrm{t}^{T}\left(\prod_{i=1}^{m} \mathbf{A}_{i}^{T} \operatorname{diag}\left(\mathbf{u}_{i}\right)\right) \mathbf{c} \tag{L} \end{equation*}$
s.t. $\left\{\begin{array}{l}\left(\mathbf{u}_{i}-\frac{1}{2}\right)\left(\mathbf{A}_{i} \mathrm{x}_{i-1}+\mathbf{b}_{i}\right) \geq 0, \mathbf{u}_{i}\left(\mathbf{u}_{i}-1\right)=0 ; \\ \mathrm{x}_{i-1}\left(\mathrm{x}_{i-1}-\mathbf{A}_{i-1} \mathrm{x}_{i-2}-\mathbf{b}_{i-1}\right)=0, \\ \mathrm{x}_{i-1} \geq 0, \mathrm{x}_{i-1} \geq \mathbf{A}_{i-1} \mathrm{x}_{i-2}+\mathbf{b}_{i-1} ; \\ \mathrm{t}^{2} \leq 1,\left(\mathrm{x}_{0}-\overline{\mathbf{x}}_{0}+\varepsilon\right)\left(\mathrm{x}_{0}-\overline{\mathbf{x}}_{0}-\varepsilon\right) \leq 0 .\end{array}\right.$

Methods

SHOR: Shor's relaxation applied to (L);
HR-1/2: 1st/2nd-order heuristic relaxation applied to (L);
LipOpt-3/4: LP-based method by Latorre et. al. with degree $3 / 4$;
LBS: Lower bound computed by random sampling.

Experimental Settings

For SHOR and HR-1/2, use MATLAB with Mosek as a backend; for LipOpt-3/4, use Python with Gurobi as a backend. OfM means running out of memory during building the model. Computational time is considered as the solver running time with unit second. All experiments are run on a personal laptop with a 4 -core $15-6300 \mathrm{HQ} 2.3 \mathrm{GHz} \mathrm{CPU}$ and 8 GB of RAM.

References

[1] Fabian Latorre, Paul Rolland, Volkan Cevher: Lipschitz constant estimation of Neural Networks via sparse polynomial optimization, ICLR2020.
[2] Tong Chen, Jean-Bernard Lasserre, Victor Magron, Edouard Pauwels: Semialgebraic Optimization for Lipschitz Constants of ReLU Networks, NeurIPS 2020.

Acknowledgements

This work has benefited from the AI Interdisciplinary Institute ANITI funding, through the French "Investing for the Future - PIA3" program under the Grant agreement n° ANR-19-PI3A-0004. Edouard Pauwels acknowledges the support of Air Force Office of Scientific Research, Air Force Material Command, USAF, under grant numbers FA9550-19-1-7026 and FA9550-18-1-0226, and ANR MasDol. Victor Magron was supported by the FMJH Program PGMO (EPICS project) and EDF, Thales, Orange et Criteo, the Tremplin ERC Stg Grant ANR-18-ERC2-0004-01 (T-COPS project) as well as the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie Actions, grant agreement 813211 (POEMA).

Lasserre's Hierarchy and Its Sparse Version

	Dense	Sparse
Original Problems	$\inf _{\mathbf{x} \in \mathbb{R}^{n}}\left\{f(\mathbf{x}): g_{i}(\mathbf{x}) \geq 0, i \in[p]\right\}$	$\inf _{\mathbf{x} \in \mathbb{R}^{n}}\left\{f(\mathbf{x}): g_{i}\left(\mathbf{x}_{I_{k(i)}}\right) \geq 0, i \in[p]\right\}$
Moment Problems	$\inf _{\mathbf{y}}\left\{L_{\mathbf{y}}(f): L_{\mathbf{y}}(1)=1\right.$,	$\inf _{\mathbf{y}}\left\{\begin{array}{l}L_{\mathbf{y}}(f): L_{\mathbf{y}}(1)=1, \\ \\ \end{array} \quad \mathbf{M}_{d}(\mathbf{y}) \succeq 0\right.$,
$\left.\mathbf{M}_{d-\omega_{i}}\left(g_{i} \mathbf{y}\right) \succeq 0, i \in[p]\right\}$	$\mathbf{M}_{d}\left(\mathbf{y}, I_{k}\right) \succeq 0, k \in[l] ;$	
Number of SDPs	$1+p$	$\left.\mathbf{M}_{d-\omega_{i}}\left(g_{i} \mathbf{y}, I_{k(i)}\right) \succeq 0, i \in[p]\right\}$
Size of SDPs	$\binom{n+2 d}{2 d},\binom{n+2\left(d-\omega_{i}\right)}{2\left(d-\omega_{i}\right)}$	$\binom{\left\|I_{k}\right\|+2 d}{2 d},\binom{\left\|I_{k}\right\|+2\left(d-\omega_{i}\right)}{2\left(d-\omega_{i}\right)}$

Semialgebraic Expression of ReLU Function and Its Derivative

Semialgebraic expression of ReLU function: $y=\max \{x, 0\} \Leftrightarrow y(y-x)=0, y \geq x, y \geq 0$;
Semialgebraic expression of the derivative of ReLU function: $y=\mathbf{1}_{\{x \geq 0\}} \Leftrightarrow y(y-1)=0,\left(y-\frac{1}{2}\right) x \geq 0$.

Experiments on Random Networks

Upper bounds of global Lipschitz constant and running time for 1-hidden layer networks.

Upper bounds of global Lipschitz constant and running time for 2-hidden layer networks.

Experiments on Trained Network (SDP-NN)

Upper bounds of Lipschitz constant and running time of various methods for SDP-NN network.

	Global				Local			
	HR-2	SHOR	LipOpt-3	LBS	HR-2	SHOR	LipOpt-3	LBS
Bound	14.56	17.85	OfM	9.69	12.70	16.07	OfM	8.20
Time	12246	2869	OfM	-	20596	4217	OfM	-

