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Problem Settings
Computing the upper bounds of Lipschitz con-
stants (with respect to norm || · ||) of fully-
connected ReLU networks. Notations:
A,b, c: parameters of the network;
m: number of hidden layers;
t: variables that dualize the norm || · ||;
u: lifting variables of the derivative of ReLU
function;
x: variables in each layer;
xy: product of two vectors is considered as
coordinate-wise product.

Mathematical Formulation

max
xi,ui,t

tT
( m∏

i=1

AT
i diag(ui)

)
c (L)

s.t.


(ui − 1

2 )(Aixi−1 + bi) ≥ 0,ui(ui − 1) = 0;

xi−1(xi−1 −Ai−1xi−2 − bi−1) = 0,

xi−1 ≥ 0,xi−1 ≥ Ai−1xi−2 + bi−1;

t2 ≤ 1, (x0 − x̄0 + ε)(x0 − x̄0 − ε) ≤ 0 .

Methods
SHOR: Shor’s relaxation applied to (L);
HR-1/2: 1st/2nd-order heuristic relaxation ap-
plied to (L);
LipOpt-3/4: LP-based method by Latorre et.
al. with degree 3/4;
LBS: Lower bound computed by random sam-
pling.

Experimental Settings
For SHOR and HR-1/2, use MATLAB with
Mosek as a backend; for LipOpt-3/4, use
Python with Gurobi as a backend.
OfM means running out of memory during
building the model. Computational time is con-
sidered as the solver running time with unit sec-
ond. All experiments are run on a personal lap-
top with a 4-core i5-6300HQ 2.3GHz CPU and
8GB of RAM.
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Lasserre’s Hierarchy and Its Sparse Version
Dense Sparse

Original Problems inf
x∈Rn

{f(x) : gi(x) ≥ 0, i ∈ [p]} inf
x∈Rn

{f(x) : gi(xIk(i)
) ≥ 0, i ∈ [p]}

Moment Problems
inf
y
{ Ly(f) : Ly(1) = 1,

Md(y) � 0,
Md−ωi

(giy) � 0, i ∈ [p]}

inf
y
{ Ly(f) : Ly(1) = 1,

Md(y, Ik) � 0, k ∈ [l];
Md−ωi

(gi y, Ik(i)) � 0, i ∈ [p]}
Number of SDPs 1 + p l + p

Size of SDPs
(
n + 2d

2d

)
,

(
n + 2(d− ωi)

2(d− ωi)

) (
|Ik|+ 2d

2d

)
,

(
|Ik|+ 2(d− ωi)

2(d− ωi)

)

Semialgebraic Expression of ReLU Function and Its Derivative
Semialgebraic expression of ReLU function: y = max{x, 0} ⇔ y(y − x) = 0, y ≥ x, y ≥ 0;
Semialgebraic expression of the derivative of ReLU function: y = 1{x≥0} ⇔ y(y−1) = 0, (y− 1

2 )x ≥ 0.
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Experiments on Random Networks
Upper bounds of global Lipschitz constant and running time for 1-hidden layer networks.
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Upper bounds of global Lipschitz constant and running time for 2-hidden layer networks.
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Experiments on Trained Network (SDP-NN)
Upper bounds of Lipschitz constant and running time of various methods for SDP-NN network.

Global Local

HR-2 SHOR LipOpt-3 LBS HR-2 SHOR LipOpt-3 LBS

Bound 14.56 17.85 OfM 9.69 12.70 16.07 OfM 8.20
Time 12246 2869 OfM - 20596 4217 OfM -


