Semialgebraic Representation of Monotone Deep Equilibrium Models (monDEQs) and Applications to Certification

Outline of the paper

We introduce the semialgebraic representations of ReLU function to describe the input-output relation of monDEQs, and propose three semidefinite programming (SDP) models for robustness certification.

- Robustness model: semialgebraicity of ReLU
- Lipschitz model: semialgebraicity of ∂ReLU
- Ellipsoid model: sum-of-square (SOS) decomposition

For simplicity, we only present the certification model. The detailed information can be referred to [3].

Structure of monDEQ

A fully-connected monDEQ [1] consists of one input layer \mathbf{x} , one implicit layer \mathbf{z} and one output layer. The values of the implicit layer is the solution of an fixed-point equation of the input layer: $\mathbf{z} = \sigma(\mathbf{W}\mathbf{z} + \mathbf{U}\mathbf{x} + \mathbf{u})$, where $\mathbf{W}, \mathbf{U}, \mathbf{u}$ are parameters of the network, and we take $\sigma = \text{ReLU}$ as the activation function.

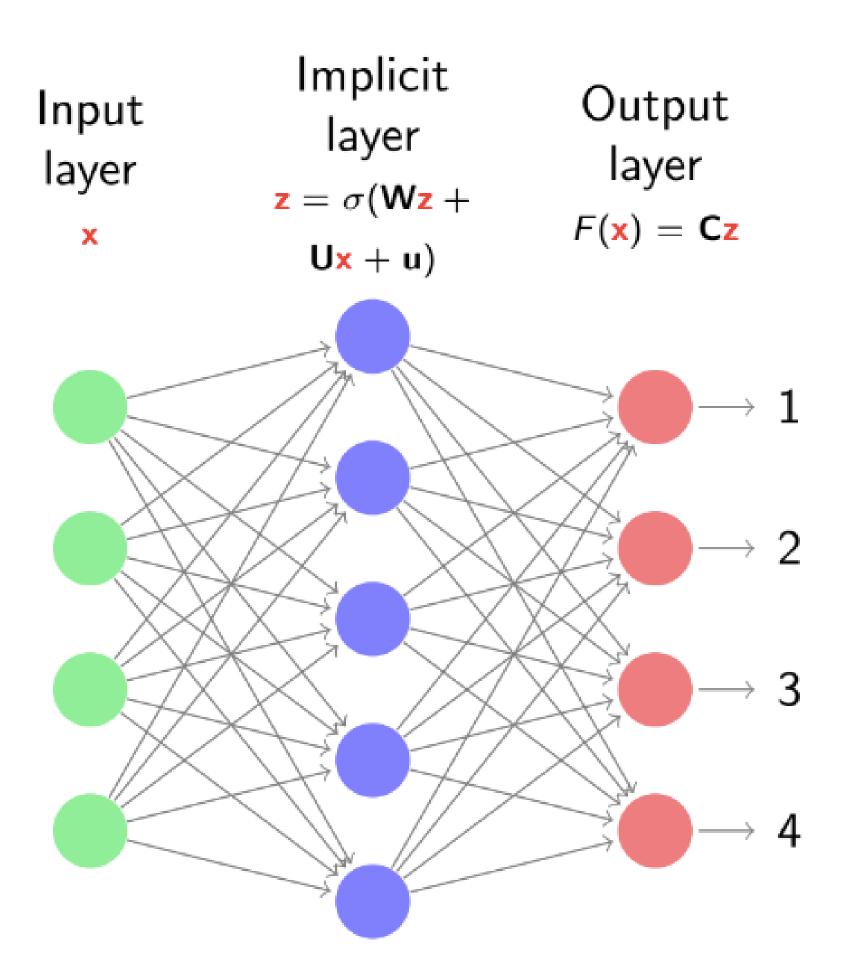
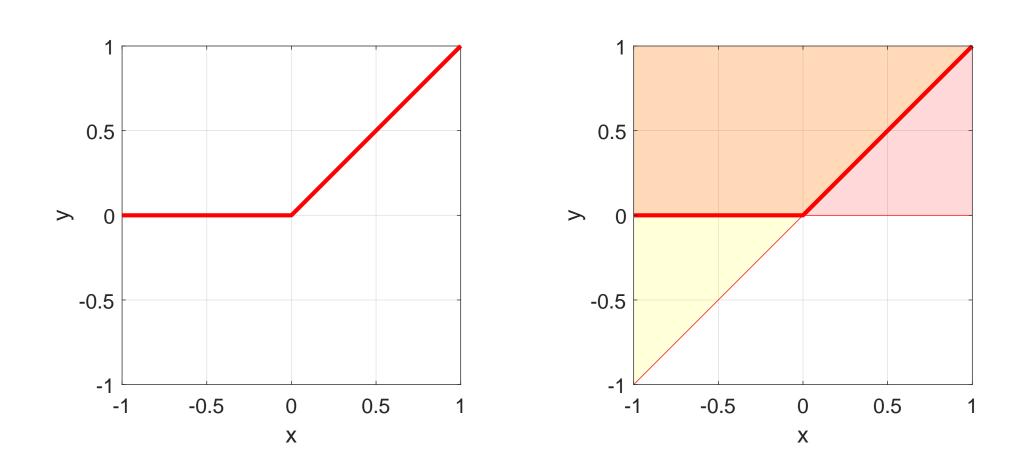


Figure 1: Fully-connected monDEQ

Tong Chen, Jean-Bernard Lasserre, Victor Magron and Edouard Pauwels LAAS-CNRS & IRIT & ANITI, Toulouse, France

Semialgebraicity of ReLU

If $y = \operatorname{ReLU}(x) = \max\{0, x\}$, it is equivalent to say that $y(y - x) = 0, y \ge x, y \ge 0$.



Hence the implicit layer of monDEQ can be written as:

$$z(z - Wz - Ux_0 - u) = 0,$$

$$z \ge Wz + Ux_0 + u,$$

$$z \ge 0.$$

Using th translate optimiza ing gene

$$\mathbf{z} \ge \mathbf{W}\mathbf{z} + \mathbf{U}\mathbf{x}_{0} + \mathbf{u}, \qquad \max \quad \boldsymbol{\xi}_{i}^{T}\mathbf{P}[\mathbf{z}] \qquad (2)$$

$$\mathbf{z} \ge 0.$$
nis semialgebraic formulation, we are able to
the the certification problem into *polynomial*
vation problem (POP) which has the follow-
real form:

$$\max \quad \boldsymbol{\xi}_{i}^{T}\mathbf{P}[\mathbf{z}] \qquad (2)$$

$$\dim(\mathbf{P}[\mathbf{z}\mathbf{z}^{T}] - \mathbf{W}\mathbf{P}[\mathbf{z}\mathbf{z}^{T}] - \mathbf{U}\mathbf{P}[\mathbf{x}\mathbf{z}^{T}] - \mathbf{U}\mathbf{P}[\mathbf{x}\mathbf{z}^{T}] - \mathbf{U}\mathbf{P}[\mathbf{x}\mathbf{z}^{T}] = 0, \mathbf{P} \ge 0, \mathbf{P}[1] = 1,$$

$$\mathbf{P}[\mathbf{z}] \ge \mathbf{W}\mathbf{P}[\mathbf{z}] + \mathbf{U}\mathbf{P}[\mathbf{x}] + \mathbf{u}, \mathbf{P}[\mathbf{z}] \ge 0,$$

$$\mathbf{1}^{T}\operatorname{diag}(\mathbf{P}[\mathbf{x}\mathbf{x}^{T}]) - 2\mathbf{x}_{0}^{T}\mathbf{P}[\mathbf{x}] + \mathbf{x}_{0}^{T}\mathbf{x}_{0} \ge 0, (L_{2})$$

$$\operatorname{diag}(\mathbf{P}[\mathbf{x}\mathbf{x}^{T}] - 2\mathbf{x}_{0}\mathbf{P}[\mathbf{x}^{T}] + \mathbf{x}_{0}\mathbf{x}_{0}^{T}). (L_{\infty})$$
where the symmetric matrix **P** is defined by

$$\mathbf{P}[\mathbf{1}] \quad \mathbf{P}[\mathbf{x}^{T}] \quad \mathbf{P}[\mathbf{z}^{T}] \mid$$

where f

Robustness Model (POP)

The optimal solution $\tilde{\delta}_i$ of (2) is an upper bound Fix an input $\mathbf{x}_0 \in \mathbb{R}^{p_0}$. Let y_0 be the label of \mathbf{x}_0 of δ_i , i.e., $\delta_i \leq \tilde{\delta}_i$. One can certify robustness of and let $\mathbf{z} \in \mathbb{R}^p$ be the variables in the monDEQ monDEQs based on the values of $\tilde{\delta}_i$: if $\tilde{\delta}_i < 0$ for all implicit layer. Let $\mathbf{W}, \mathbf{U}, \mathbf{u}, \mathbf{C}$ be the parameters of $i \neq y_0$, then the network F is robust at \mathbf{x}_0 . monDEQ and denote by $\xi_i = (\mathbf{C}_{i,:} - \mathbf{C}_{y_{0,:}})^T$. The Robustness Model for monDEQ reads:

$$\delta_i := \max \quad \xi_i^T \mathbf{z} \tag{1}$$

s.t.
$$\begin{vmatrix} \mathbf{z} = \operatorname{ReLU}(\mathbf{W}\mathbf{z} + \mathbf{U}\mathbf{x} + \mathbf{u}), \\ \mathbf{x} \in \mathcal{E} \subset \mathbb{R}^{p_0}, \mathbf{z} \in \mathbb{R}^p. \end{vmatrix}$$
 [1]

where the input region \mathcal{E} is the ball (w.r.t. norm $\|\cdot\|$) around \mathbf{x}_0 of a preset radius ε , i.e., $\mathcal{E} = \{\mathbf{x} \in \mathbf{x} \in \mathbf{x} \in \mathbf{x}\}$ \mathbb{R}^{p_0} : $\|\mathbf{x} - \mathbf{x}_0\| \leq \varepsilon$. Using the semialgebraicity of ReLU function, it is easy to see that problem (1) is a POP.

Semidefinite Programming (SDP)

A real symmetric $n \times n$ matrix **M** is said to be *pos*itive semidefinite (PSD), denoted by $\mathbf{M} \succeq 0$, if $\mathbf{z}^T \mathbf{M} \mathbf{z} \geq 0$ for all $\mathbf{z} \in \mathbb{R}^n$. A semidefinite programming (SDP) can be written in the form:

 $\min_{X\in\mathbb{S}^n}\{\langle \mathbf{C},\mathbf{X}\rangle_{\mathbb{S}^n}:\langle \mathbf{A}_k,\mathbf{X}\rangle_{\mathbb{S}^n}=b_k,k=1,\ldots,m;\mathbf{X}\succeq 0\},\$

where \mathbb{S}^n denotes the the space of all real symmetric $n \times n$ matrices, and $\langle \cdot, \cdot \rangle_{\mathbb{S}^n}$ denotes the Frobenius scalar product in \mathbb{S}^n .

Robustness Model (SDP)

Applying Shor's relaxation to POP (1), we obtain an SDP:

$$\mathbf{P} = \begin{bmatrix} \mathbf{P}[1] & \mathbf{P}[\mathbf{x}^{T}] & \mathbf{P}[\mathbf{z}^{T}] \\ \mathbf{P}[\mathbf{x}] & \mathbf{P}[\mathbf{x}\mathbf{x}^{T}] & \mathbf{P}[\mathbf{x}\mathbf{z}^{T}] \\ \mathbf{P}[\mathbf{z}] & \mathbf{P}[\mathbf{z}\mathbf{x}^{T}] & \mathbf{P}[\mathbf{z}\mathbf{z}^{T}] \end{bmatrix}.$$

References

- Ezra Winston and J. Zico Kolter.
- Monotone operator equilibrium networks.
- [2] Chirag Pabbaraju, Ezra Winston, and J. Zico Kolter. Estimating lipschitz constants of monotone deep equilibrium models.
- [3] Tong Chen, Jean B Lasserre, Victor Magron, and Edouard Pauwels.
- Semialgebraic representation of monotone deep
- equilibrium models and applications to certification.

Based on the first 100 test examples of MNIST dataset, we compute the ratio of certified examples for robustness model. We compare our SDP-based method with the state-of-the-art in [2]. We consider L_2 norm with $\varepsilon = 0.1$ and L_{∞} norm with $\varepsilon = 0.1, 0.05, 0.01.$

From Table 1, we see that our method outperforms the method in [2] for all the cases. Another interesting phenomenon is that, for $\varepsilon = 0.1$, we can certify 99% of the examples for L_2 norm while 0% for L_{∞} norm. Compared to the traditional deep neural networks, this means monDEQs are less robust with respect to L_{∞} norm.

Numerical Results

Norm	${\mathcal E}$	Our method	Pabbaraju et. al.
L_2	0.1	99%	91%
L_{∞}	0.1	0%	0%
	0.05	24%	0%
	0.01	99%	24%

Table 1:Ratio of certified test examples

Contact Information

• Web: http://www.github.com/TongCHEN779 • Email: tchen@laas.fr