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Outline of the paper

We introduce the semialgebraic representations
of ReLU function to describe the input-output
relation of monDEQs, and propose three semi-
definite programming (SDP) models for robust-
ness certification.
•Robustness model: semialgebraicity of ReLU
•Lipschitz model: semialgebraicity of ∂ReLU
•Ellipsoid model: sum-of-square (SOS)
decomposition

For simplicity, we only present the certification
model. The detailed information can be referred
to [3].

Structure of monDEQ

A fully-connected monDEQ [1] consists of one in-
put layer x, one implicit layer z and one output
layer. The values of the implicit layer is the solu-
tion of an fixed-point equation of the input layer:
z = σ(Wz + Ux + u), where W,U,u are param-
eters of the network, and we take σ = ReLU as the
activation function.

Figure 1:Fully-connected monDEQ

Semialgebraicity of ReLU

If y = ReLU(x) = max{0, x}, it is equivalent to say
that y(y − x) = 0, y ≥ x, y ≥ 0.
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Hence the implicit layer of monDEQ can be written
as:

z(z−Wz−Ux0 − u) = 0,
z ≥Wz + Ux0 + u,
z ≥ 0.

Using this semialgebraic formulation, we are able to
translate the certification problem into polynomial
optimization problem (POP) which has the follow-
ing general form:

max
x∈Rn
{f (x) : gi(x) ≥ 0, i = 1, . . . , p}

where f and gi are polynomials.

Robustness Model (POP)

Fix an input x0 ∈ Rp0. Let y0 be the label of x0
and let z ∈ Rp be the variables in the monDEQ
implicit layer. Let W,U,u,C be the parameters of
monDEQ and denote by ξi = (Ci,: − Cy0,:)T . The
Robustness Model for monDEQ reads:

δi := max ξTi z (1)

s.t.



z = ReLU(Wz + Ux + u),
x ∈ E ⊆ Rp0, z ∈ Rp.

where the input region E is the ball (w.r.t. norm
‖ · ‖) around x0 of a preset radius ε, i.e., E = {x ∈
Rp0 : ‖x − x0‖ ≤ ε}. Using the semialgebraicity of
ReLU function, it is easy to see that problem (1) is
a POP.

Semidefinite Programming (SDP)

A real symmetric n×n matrix M is said to be pos-
itive semidefinite (PSD), denoted by M � 0, if
zTMz ≥ 0 for all z ∈ Rn. A semidefinite pro-
gramming (SDP) can be written in the form:
min
X∈Sn
{〈C,X〉Sn : 〈Ak,X〉Sn = bk, k = 1, . . . ,m; X � 0} ,

where Sn denotes the the space of all real symmetric
n × n matrices, and 〈·, ·〉Sn denotes the Frobenius
scalar product in Sn.

Robustness Model (SDP)

Applying Shor’s relaxation to POP (1), we obtain
an SDP:
max ξTi P[z] (2)

s.t.



diag(P[zzT ]−WP[zzT ]−UP[xzT ]
−uP[zT ]) = 0,P � 0,P[1] = 1,

P[z] ≥WP[z] + UP[x] + u,P[z] ≥ 0,
1Tdiag(P[xxT ])− 2xT0 P[x] + xT0 x0 ≥ 0, (L2)
diag(P[xxT ]− 2x0P[xT ] + x0xT0 ). (L∞)

where the symmetric matrix P is defined by

P =



P[1] P[xT ] P[zT ]
P[x] P[xxT ] P[xzT ]
P[z] P[zxT ] P[zzT ]


.

The optimal solution δ̃i of (2) is an upper bound
of δi, i.e., δi ≤ δ̃i. One can certify robustness of
monDEQs based on the values of δ̃i: if δ̃i < 0 for all
i 6= y0, then the network F is robust at x0.
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Numerical Results

Based on the first 100 test examples of MNIST
dataset, we compute the ratio of certified examples
for robustness model. We compare our SDP-based
method with the state-of-the-art in [2]. We con-
sider L2 norm with ε = 0.1 and L∞ norm with
ε = 0.1, 0.05, 0.01.

Norm ε Our method Pabbaraju et. al.
L2 0.1 99% 91%

L∞

0.1 0% 0%
0.05 24% 0%
0.01 99% 24%

Table 1:Ratio of certified test examples

From Table 1, we see that our method outperforms
the method in [2] for all the cases. Another interest-
ing phenomenon is that, for ε = 0.1, we can certify
99% of the examples for L2 norm while 0% for L∞
norm. Compared to the traditional deep neural net-
works, this means monDEQs are less robust with
respect to L∞ norm.
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