Zonotope verification of Monotone operator equilibrium models

http://arxiv.org/abs/2110.08260

ANITI, UT3, LAAS-CNRS

Robustness of neural network

2 / 10

Deep neural networks (DNNs)

Fully-connected DNN with activation function σ .

2

$\mathsf{Input} \to \mathsf{Transformation} \to \mathsf{Approximation} \to \mathsf{Output}.$

2

Monotone operator equilibrium models (monDEQs)

Fully-connected monDEQ with activation function $\sigma,\,\mathbf{I}-\mathbf{W}$ is strongly monotone.

2

Splitting methods for fixed-point iteration

Fixed-point equation: $\mathbf{z} = \sigma(\mathbf{W}\mathbf{z} + \mathbf{U}\mathbf{x} + \mathbf{u})$

► Forward-Backward Splitting (FB): **z**₀ = 0,

$$\mathbf{z}_{n+1} = g_{lpha}^{FB}(\mathbf{x}, \mathbf{z}_n) = \sigma((1 - lpha)\mathbf{z}_n + lpha(\mathbf{W}\mathbf{z}_n + \mathbf{U}\mathbf{x} + \mathbf{u}))$$

converges if $0 < \alpha < 2m/||\mathbf{I} - \mathbf{W}||_2^2$.

• Peaceman-Rachford Splitting (PR): $\mathbf{z}_0 = \mathbf{u}_0 = \mathbf{0}$,

$$\begin{aligned} \mathbf{u}'_{n+1} &= 2\mathbf{z}_n - \mathbf{u}_n \\ \mathbf{z}'_{n+1} &= (\mathbf{I} + \alpha(\mathbf{I} - \mathbf{W}))^{-1}(\mathbf{u}'_{n+1} + \alpha(\mathbf{U}\mathbf{x} + \mathbf{u})) \\ \mathbf{u}_{n+1} &= 2\mathbf{z}'_{n+1} - \mathbf{u}'_{n+1} \\ \mathbf{z}_{n+1} &= \sigma(\mathbf{u}_{n+1}) \\ [\mathbf{z}_{n+1}, \mathbf{u}_{n+1}] &= g_{\alpha}^{PR}(\mathbf{x}, \mathbf{z}_n, \mathbf{u}_n) \end{aligned}$$

converges for any $\alpha > 0$.

Splitting methods on sets of points

- Denote by g_α the exact iteration, g[#]_α the over-approximation operation.
- Denote by Z_n (resp. U_n) the exact set, Â_n (resp. Û_n) the over-approximation set, Z^{*} the fixed-point set.
- Fixed-Point contraction). Let [Ẑ_{n+1}, Û̂_{n+1}] = g[#]_α(X, Ẑ_n, Û̂_n) be closed sets over-approximating z_{n+1} and u_{n+1} obtained by applying the solver iteration n + 1 times for some z₀, u₀ and all inputs x ∈ X. Then:

$$\hat{\mathcal{Z}}_{n+1} \subseteq \hat{\mathcal{Z}}_n, \hat{\mathcal{U}}_{n+1} \subseteq \hat{\mathcal{U}}_n \implies \mathcal{Z}_j \subseteq \hat{\mathcal{Z}}_{n+1}, \forall j > n \implies \mathcal{Z}^* \subseteq \hat{\mathcal{Z}}_{n+1}$$

Splitting methods on sets of points

Input to iteration step

Output of iteration step

イロン イ団 とく ヨン イヨン

2

M-zonotope: inclusion checking and propagation

Mixed(M)-zonotope = zonotope + hyper-box + center:

$$\hat{\mathcal{Z}} = \mathsf{A}\mathsf{x} + \operatorname{diag}(\mathsf{b})\mathsf{y} + \mathsf{c} \subseteq \mathbb{R}^{p}$$

▶ zonotope $\mathbf{A}\mathbf{x}$: $\mathbf{A} \in \mathbb{R}^{p \times k}, \mathbf{x} \in [-1, 1]^k$.

▶ hyper-box diag(**b**)**y**: $\mathbf{b} \in \mathbb{R}^{p}_{+}, \mathbf{y} \in [-1, 1]^{k}$.

• center $\mathbf{c} \in \mathbb{R}^{p}$.

	Box	Zonotope	M-zonotope
precision	\odot	\bigcirc	\odot
Inclusion checking	\bigcirc	\odot	Û

First 100 test examples of MNIST dataset.

- ε: range of perturbation; n: number of successfully certified examples; t: average computation time.
- SemiSDP: SDP-based method by (Chen et al., 2021); CRAFT: zonotope-based method by (Müller et al., 2021).

6	Sen	niSDP	CRAFT	
ε —	n	t(s)	n	t(s)
0.10	0	1350	0	9.75
0.05	24	1350	30	15.75
0.01	99	1350	99	1.4

ヘロン 人間 とくほ とくほ とう