Minimum Finite Covering

ML Section Talk Tong Chen

Outline

- Method
- 2 Issues
- Solutions

General definition

ε -covering, ε -coreset (general case)

Let $\mathcal{S}\subseteq (\Omega,d)$, where Ω is a space endowed with distance metric $d:\Omega\times\Omega\to\mathbb{R}$. A set $\mathcal{T}\subseteq\Omega$ is said to be an ε -covering of \mathcal{S} , if for all $\mathbf{x}\in\mathcal{S}$, there exists $\mathbf{y}\in\mathcal{T}$, such that $d(\mathbf{x},\mathbf{y})\leq\varepsilon$, or equivalently,

$$\mathcal{S} \subseteq \bigcup_{\mathbf{y} \in \mathcal{T}} \mathbf{B}(\mathbf{y}, \varepsilon),$$

where $\mathbf{B}(\mathbf{y}, \varepsilon) := {\mathbf{x} \in \Omega : d(\mathbf{x}, \mathbf{y}) \le \varepsilon}$. If $\mathcal{T} \subseteq \mathcal{S}$, we call it an ε -coreset.

Minimum ε -coreset of a finite set

Formulation in finte case

Let $S = \{\mathbf{x}_i\}_{i=1}^N \subseteq (\Omega, d)$. For $\varepsilon > 0$, define the adjacency matrix of S as

$$\mathbf{A}(arepsilon) := [a_{ij}(arepsilon)], \ a_{ij}(arepsilon) = egin{cases} 1, & d(\mathbf{x}_i, \mathbf{x}_j) \leq arepsilon; \ 0, & ext{otherwise.} \end{cases}$$

Let $\mathcal{T} \subseteq \mathcal{S}$ and define $\mathbf{s} \in \{0,1\}^N$, where $s_i = 1$ if $\mathbf{x}_i \in \mathcal{T}$ otherwise $s_i = 0$. Then

- (1) \mathcal{T} is an ε -coreset $\iff \mathbf{A}(\varepsilon) \cdot \mathbf{s} \geq 1$;
- (2) \mathcal{T} is an ε -coreset with minimum size: $\min_{\mathbf{s} \in \{0,1\}^N} \{ \|\mathbf{s}\|_1 : \mathbf{A}(\varepsilon) \cdot \mathbf{s} \ge 1 \}$

Properties of minimum ε -coreset

- Converging to original dataset S.
- Relation to Hausdorff distance:

(1)
$$d_H(S, T) = \varepsilon \iff \begin{cases} S \text{ is an } \varepsilon\text{-covering of } T; \\ T \text{ is an } \varepsilon\text{-covering of } S. \end{cases}$$

(2) If
$$\mathcal{T} \subseteq \mathcal{S}$$
, then $d_H(\mathcal{S}, \mathcal{T}) = \varepsilon \iff \mathcal{T}$ is an ε -covering of \mathcal{S} .

- Dimension-free: $\mathbf{A}(\varepsilon)$ is of size N-by-N.
- Distance flexible: $d: \Omega \times \Omega \to \mathbb{R}$.

ℓ_m -norm, k = 50

ℓ_{∞} -norm, k = 100

*L*₄-norm, *k* = 10

 ℓ_A -norm, k = 50

Issues for low-budget regime

- Density of data distribution
- Manifold structure

Issue 1: density

Let p be a probability density function,

• Covering using Euclidean distance: for some $\mathbf{x}_i, \mathbf{x}_j$,

$$\int_{\{\mathbf{x}: \ \|\mathbf{x}-\mathbf{x}_i\|_2 \leq \varepsilon\}} p(\mathbf{x}) \mathrm{d}\mathbf{x} \neq \int_{\{\mathbf{x}: \ \|\mathbf{x}-\mathbf{x}_j\|_2 \leq \varepsilon\}} p(\mathbf{x}) \mathrm{d}\mathbf{x}$$

• Need some distance metric, such that: for all $\mathbf{x}_i, \mathbf{x}_j$,

$$\int_{\{\mathbf{x}:\ d(\mathbf{x},\mathbf{x}_i)\leq\varepsilon\}} p(\mathbf{x}) \mathrm{d}\mathbf{x} = \int_{\{\mathbf{x}:\ d(\mathbf{x},\mathbf{x}_j)\leq\varepsilon\}} p(\mathbf{x}) \mathrm{d}\mathbf{x}$$

Solution to Issue 1

Let f be the cumulative distribution function (CDF) of p:

$$f(x) = \int_{-\infty}^{x} p(t) dt,$$

- If $x \sim p(x)$, then f(x) is **uniform**.
- Define the **pull-back** distance: $d_f(x, y) = |f(x) f(y)|$.
- $\int_{\{x: d_f(x,x_i) \le \varepsilon\}} p(x) \mathrm{d}x = \int_{\{x: d_f(x,x_i) \le \varepsilon\}} p(x) \mathrm{d}x$

Covering of Gaussian samples

Issue 2: manifold

Covering of manifold

spiral (1D manifold)

disk (2D manifold)

Covering of manifold

Solution to Issue 2

Assume all data is supported on a manifold \mathcal{M} , for $\mathbf{x}, \mathbf{y} \in \mathcal{M}$,

- Properly define a curve $\gamma:[0,1]\to\mathcal{M}$, with $\gamma(0)=\mathbf{x},\gamma(1)=\mathbf{y}$.
- Compute curve length: $L(\gamma) = \int_0^1 \|\gamma'(t)\| dt$.
- Define the distance by curve length:

$$d_{\mathbf{g}}(\mathbf{x},\mathbf{y}) = \inf_{\gamma} \{L(\gamma) : \gamma : [0,1] \to \mathcal{M}\}.$$

Summary

- Covering: dimension-free, distance flexible.
- Issues: density and manifold structure.
- Solutions:
 - (1) Map non-uniform to uniform (flow-matching), Riemannian to Euclidean (VAE).
 - (2) Pull distance back.
- Future work: performance?

Questions?

