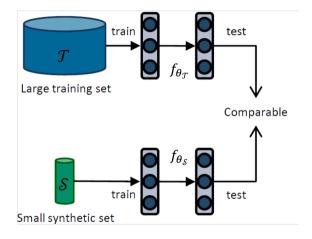

Dataset Condensation

ATDL Talk Tong Chen, ML section, DIKU



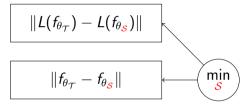
Illustrative example: SVM

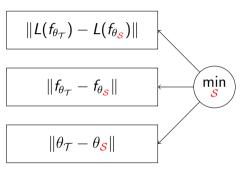
What is Dataset Condensation (DC)?

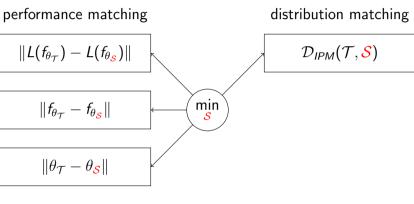
Does DC work?

50 images per class for CNN

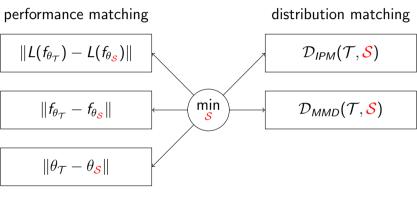
[Zhao et al. 2021] Dataset Condensation with Gradient Matching



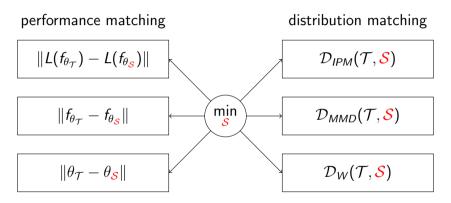

performance matching


$$\|L(f_{ heta_{\mathcal{T}}}) - L(f_{ heta_{\mathcal{S}}})\|$$
 $\min_{\mathcal{S}}$

performance matching



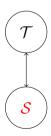
performance matching



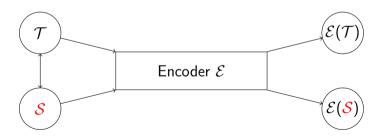
eg.
$$\mathcal{D}_{\mathit{IPM}}(\mathcal{T},\mathcal{S}) = \sup_{f \in \mathcal{F}} \|\mathbb{E}_{\mathcal{T}}[f] - \mathbb{E}_{\mathcal{S}}[f]\|$$

eg.
$$\mathcal{D}_{\mathit{IPM}}(\mathcal{T},\mathcal{S}) = \sup_{f \in \mathcal{F}} \|\mathbb{E}_{\mathcal{T}}[f] - \mathbb{E}_{\mathcal{S}}[f]\|$$

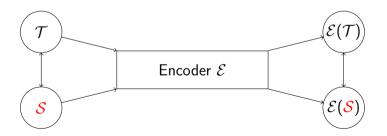
eg.
$$\mathcal{D}_{\mathit{IPM}}(\mathcal{T},\mathcal{S}) = \sup_{f \in \mathcal{F}} \|\mathbb{E}_{\mathcal{T}}[f] - \mathbb{E}_{\mathcal{S}}[f]\|$$

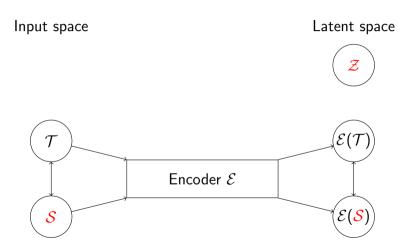


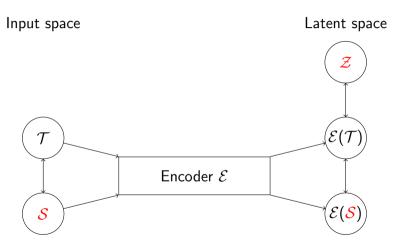
Input space

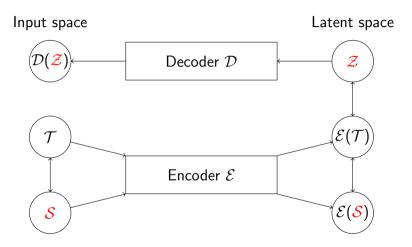


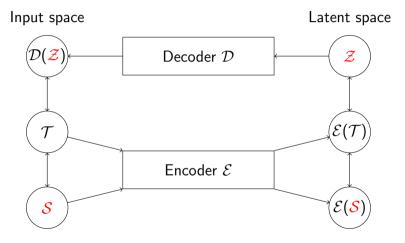
Input space


Input space


Latent space




Input space


Latent space

Examples: DC with performance matching

Matching f_{θ} [Wang et al. 2022]

Matching θ [Cazenavette et al. 2022]

Examples: DC with distribution matching

IPM with CNN [Zhao et al. 2021]

MMD with Gaussian [Zhang et al. 2023]

Examples: DC with generative models

Pre-trained GAN [Zhang et al. 2023]

GAN [Wang et al. 2023]

• Beyond accuracy: robustness, fairness, privacy, etc.

- Beyond accuracy: robustness, fairness, privacy, etc.
- Does synthetic dataset preserves privacy, robustness or fairness?

- Beyond accuracy: robustness, fairness, privacy, etc.
- Does synthetic dataset preserves privacy, robustness or fairness?
- Adversarial loss:

$$L^{adv}(f) = \mathbb{E}_{\mathcal{T}}igg[\max_{\|\delta\| \leq arepsilon} I(f(\mathbf{x} + \delta), y)igg]$$

- Beyond accuracy: robustness, fairness, privacy, etc.
- Does synthetic dataset preserves privacy, robustness or fairness?
- Adversarial loss:

$$L^{adv}(f) = \mathbb{E}_{\mathcal{T}}igg[\max_{\|\delta\| \leq arepsilon} I(f(\mathbf{x} + \delta), y)igg]$$

Performance matching:

$$\min_{\mathcal{S}} \ \|L^{adv}(f_{\theta_{\mathcal{T}}}^{adv}) - L^{adv}(f_{\theta_{\mathcal{S}}}^{adv})\|$$

- Beyond accuracy: robustness, fairness, privacy, etc.
- Does synthetic dataset preserves privacy, robustness or fairness?
- Adversarial loss:

$$L^{adv}(f) = \mathbb{E}_{\mathcal{T}}igg[\max_{\|\delta\| \leq arepsilon} I(f(\mathbf{x} + \delta), y)igg]$$

Performance matching:

$$\min_{\mathbf{S}} \| L^{adv}(f_{\theta_{\mathcal{T}}}^{adv}) - L^{adv}(f_{\theta_{\mathbf{S}}}^{adv}) \|$$

• How does the distribution of synthetic dataset looks like?

